313.100 (19W) Elementare Diskrete Mathematik

Wintersemester 2019/20

Anmeldefrist abgelaufen.

Erster Termin der LV
08.10.2019 16:00 - 18:00 , HS 2
Nächster Termin:
19.11.2019 16:00 - 18:00 , HS 2

Überblick

Lehrende/r
Tutor/in/Innen
LV Nummer Südostverbund
INC03001UL, MAA01001UL
LV-Titel englisch
Elementary Discrete Mathematics
LV-Art
Vorlesung-Übung (prüfungsimmanente LV )
Semesterstunde/n
2.0
ECTS-Anrechungspunkte
3.0
Anmeldungen
50 (50 max.)
Organisationseinheit
Unterrichtssprache
Deutsch
mögliche Sprache/n der Leistungserbringung
Deutsch , Englisch
LV-Beginn
08.10.2019
eLearning
zum Moodle-Kurs

LV-Beschreibung

Intendierte Lernergebnisse

Die Studierenden erwerben ein solides Verständnis von und einen sicheren Umgang mit ausgewählten Begriffen, Verfahren und Arbeitsweisen der elementaren diskreten Mathematik. Sie verfügen über exemplarische Kenntnisse mathematischer Werkzeuge und Beweistechniken sowie typischer fachspezifischer Denk- und Arbeitsweisen. 

Lehrmethodik

Vortrag, Lösen und Präsentation von Aufgaben durch Studierende.

Inhalt/e

  • Kombinatorik, insbes. Zählprinzipien
  • Peano-Axiome und vollständige Induktion
  • Mengen, Aussagen, Beweise
  • Zahldarstellungen
  • Primzahlen und modulare Arithmetik
  • Funktionen und Relationen
  • Elementare algebraische Strukturen

Literatur

Kirsch, Arnold (2004): Mathematik wirklich verstehen. Eine Einführung in ihre Grundbegriffe und Denkweisen. Köln: Aulis Verlag Deubner. (Hauptquelle)

Schubert, Matthias (2012): Mathematik für Informatiker. Ausführlich erklärt mit vielen Programmbeispielen und Aufgaben. Wiesbaden: Vieweg + Teubner.

Teschl, G. & Teschl, S. (2008). Mathematik für Informatiker. Band 1: Diskrete Mathematik und Lineare Algebra (3. Auflage). Berlin, Heidelberg: Springer.

Weitere, themenspezifische Literatur wird ggf. in der LV bekanntgegeben.

Prüfungsinformationen

Prüfungsmethode/n

  1. Schriftliche Prüfung (in der sicheren Prüfungsumgebung) am Ende des Semesters
  2. Prüfungsimmanente Leistungen: Kreuzeln, ggf. Abgabe und Präsentation von Übungsbeispielen (via Moodle)
  3. Übungstermine:  5 Termine, werden noch bekanntgegeben (die besten 4 Termine werden gewertet).
  4. Prüfungstermin: wird rechtzeitig bekanntgegeben, voraussichtlich 1. Feber-Woche.
  5. The course will be held in German, exercises and the exam will also be provided in English if necessary.


Prüfungsinhalt/e

Themen der Veranstaltung

Beurteilungskriterien/-maßstäbe

regelmäßige aktive Teilnahme (inkl. Übungen, vgl. erste Vorbesprechung/Moodle) + schriftliche (ggf. elektronische) Prüfung am Ende des Semesters

Beurteilungsschema

Note/Grade Benotungsschema

Position im Curriculum

  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Informatik (SKZ: 414, Version: 17W.2)
    • Fach: Mathematische Grundlagen (AAU) (Wahlfach)
      • INC.003 Elementare Diskrete Mathematik ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
          Absolvierung im 3. Semester empfohlen
  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Mathematik (SKZ: 420, Version: 15W.2)
    • Fach: Elementare Mathematik 1 (Pflichtfach)
      • MAA.001 Elementare Diskrete Mathematik ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Mathematik (SKZ: 420, Version: 17W.2) Teil der STEOP
    • Fach: Elementare Mathematik 1 (Pflichtfach)
      • MAA.001 Elementare Diskrete Mathematik (STEOP) ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Mathematik (SKZ: 420, Version: 19W.1) Teil der STEOP
    • Fach: Elementare Mathematik 1 (Pflichtfach)
      • MAA.001 Elementare Diskrete Mathematik (STEOP) ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Lehramtsstudium Unterrichtsfach Informatik und Informatikmanagement (SKZ: 884, Version: 04W.7)
    • 1.Abschnitt
      • Fach: Mathematik und Theoretische Informatik (LI 1.2) (Pflichtfach)
        • Diskrete Mathematik ( 2.0h UE / 4.0 ECTS)
          • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
  • Lehramtsstudium Unterrichtsfach Mathematik (SKZ: 406, Version: 04W.7)
    • 1.Abschnitt
      • Fach: Algebra und Geometrie (LM 1.3.) (Pflichtfach)
        • Diskrete Mathematik ( 4.0h VO / 5.0 ECTS)
          • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 17W.1)
    • Fach: Mathematik und Theoretische Grundlagen (Pflichtfach)
      • 3.3 Elementare Diskrete Mathematik ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Bachelorstudium Informationsmanagement (SKZ: 522, Version: 17W.1)
    • Fach: Wahlfach Mathematik und Statistik (Informatik) (Wahlfach)
      • 5.2 Lehrveranstaltungen aus dem Studium Angewandte Informatik/Bereich Mathematik und Statistik für Informatik ( 0.0h VO,KS / 12.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
  • Bachelorstudium Informationsmanagement (SKZ: 522, Version: 12W.1)
    • Fach: Wahlfach Mathematik und Statistik (Informatik) (Wahlfach)
      • 1.1.1 Lineare Algebra und Diskrete Mathematik ( 0.0h KU / 3.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)
  • Erweiterungscurriculum Grundlagen Mathematik (Version: 16W.1)
    • Fach: Basiswissen (Pflichtfach)
      • Elementare Diskrete Mathematik ( 0.0h VU / 3.0 ECTS)
        • 313.100 Elementare Diskrete Mathematik (2.0h VU / 3.0 ECTS)

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Sommersemester 2019
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2018/19
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2017/18
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2016/17
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2015/16
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)