700.470 (20S) Artificial Vision
Überblick
- Lehrende/r
- LV-Titel englisch Artificial Vision
- LV-Art Vorlesung-Kurs (prüfungsimmanente LV )
- Semesterstunde/n 2.0
- ECTS-Anrechnungspunkte 4.0
- Anmeldungen 10 (20 max.)
- Organisationseinheit
- Unterrichtssprache Englisch
- mögliche Sprache/n der Leistungserbringung Englisch
- LV-Beginn 13.05.2020
- eLearning zum Moodle-Kurs
- Seniorstudium Liberale Ja
Zeit und Ort
LV-Beschreibung
Intendierte Lernergebnisse
Understanding the fundamentals and key processing steps of artificial vision-based systems
Gaining experience in programming vision algorithms
Lehrmethodik inkl. Einsatz von eLearning-Tools
Lecture
Student presentations
Programming units
Inhalt/e
Artificial Vision Guest Lecture Series 2020
The lecture series will introduce the pipeline and the modules to develop advanced artificial vision based systems. From the early stages of image creation to the most advanced techniques for image and video interpretation the course will propose the state of the art algorithms for detecting objects and understanding their activities. A sufficient amount of hours will be reserved to laboratory activities allowing to implement some algorithms.
Outline:
- Introduction
- Computational pipeline of an artificial vision systems
- Low level processing (object segmentation, object detection, etc.)
Image differencing (Frame to Background; Frame by frame); Background Updating; Thresholding (Image registration; Translation; Affine; Homography)
Feature based image registration (Feature tracking; Outlier detection; Transform Computation)
Stereo Vision - Middle level processing (object recognition, object tracking, etc.)
Space projection (Principal Component Analysis, Linear Discriminant Analysis, etc.)
Machine Learning for object recognition (neural networks, neural trees, etc.)
Deep learning for computer vision - High level processing (behaviour analysis, event detection, etc.)
Architecture for behaviour analysis
Simple events
Complex events
Feature extraction
Trajectory analysis
Clustering
Decision making - Network reconfiguration
Modeling of a sensor network
Resources Optimization - Python Laboratory
Change Detection
Image Mapping
Image Registration (Mosaicking)
Erwartete Vorkenntnisse
UPDATED SCHEDULE, May 06, 2020
Wed 13/5:
09:00 - 12:00 and 14:00 18:00
Thu 14/5:
09:00 -13:00 and 14:00 - 18:00
Fri 15/5:
09:00 - 13:00 and 14:00 - 18:00
UPDATE April2020:
Please be informed that the guest lecture on "Artificial Vision" will take place as planned and on dates/time as announced although it will be offered online! We will inform you with further details in due time!
Prüfungsinformationen
Geänderte Prüfungsinformationen (COVID-19 Ausnahmeregelung)
Mode of Exam:
a.) presentation in the last session of the course,
b.) programming project (which will expand the topic discussed in the presentation at the end of last lesson)
c.) written project report to be uploaded to Moodle
Deadline for both top b.) and top c.) -> June 25, 2020; 23.59hrs
*********************************************************************************************
JUNE 16, 2020: DEADLINE for both top b.) and c.) EXTENDED TO JULY 31, 2020; 23:59hrs
*********************************************************************************************
Prüfungsmethode/n
Student presentation
and
Programming project or written exam
Prüfungsinhalt/e
topics of the lecture
Beurteilungskriterien/-maßstäbe
quality of the presentation
quality and scope of the programming project or written exam
Beurteilungsschema
Note BenotungsschemaPosition im Curriculum
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
- 700.470 Artificial Vision (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
- 700.470 Artificial Vision (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
- 700.470 Artificial Vision (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
- 700.470 Artificial Vision (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung
-
Sommersemester 2022
- 700.470 VC Artificial Vision (2.0h / 4.0ECTS)
-
Sommersemester 2018
- 700.470 VC Artificial Vision (2.0h / 4.0ECTS)
-
Sommersemester 2016
- 700.470 VC Artificial Vision (2.0h / 4.0ECTS)
-
Sommersemester 2014
- 700.470 VK Artificial Vision (2.0h / 4.0ECTS)
-
Sommersemester 2013
- 700.470 VK Artificial Vision (2.0h / 4.0ECTS)