311.142 (18W) Übungen zu Algebraische Strukturen

Wintersemester 2018/19

Anmeldefrist abgelaufen.

Erster Termin der LV
02.10.2018 15:00 - 16:00 , HS 3
... keine weiteren Termine bekannt

Überblick

Lehrende/r
LV-Titel englisch
Algebraic Structures, exercises
LV-Art
Übung (prüfungsimmanente LV )
Semesterstunde/n
1.0
ECTS-Anrechungspunkte
2.0
Anmeldungen
17 (25 max.)
Organisationseinheit
Unterrichtssprache
Deutsch
LV-Beginn
02.10.2018
eLearning
zum Moodle-Kurs

LV-Beschreibung

Intendierte Lernergebnisse

Siehe zugehörige VO Algebraische Strukturen.

Lehrmethodik

Präsentation bzw. Vorrechnen von Lösungen durch die Studierenden, Diskussion dieser und anderer Lösungen.

Inhalt/e

Begriffe, Sätze und Methoden der VO Algebraische Strukturen an Beispielen üben und festigen.

Erwartete Vorkenntnisse

Siehe zugehörige VO Algebraische Strukturen. Zusätzlich: Grundkenntnisse im Umgang mit einem Computeralgebrasystem (CAS), z.B. Mathematica, Sage.

Literatur

Siehe zugehörige VO Algebraische Strukturen.

Prüfungsinformationen

Prüfungsmethode/n

Lösen von Übungsaufgaben und Präsentation der vorbereiteten Lösungen. Fragen zu den Übungsaufgaben u.a. betreffend die entsprechenden Inhalte der zugehörigen VO Algebraische Strukturen.

Prüfungsinhalt/e

Aufgaben zu den Inhalten der zugehörigen VO Algebraische Strukturen.

Beurteilungskriterien/-maßstäbe

  • Die Übungsaufgaben werden etwa eine Woche vor der jeweiligen Übungseinheit via Moodle ausgegeben.
  • Mindestens 60% aller Übungsaufgaben müssen für eine positive Beurteilung vorbereitet werden.
  • Bis zu zwei Stunden vor der Übungseinheit kann via ZEUS angeben werden, welche Aufgaben der/die Studierende gelöst hat. Dadurch geben die Studierenden sowohl Ihr gründliches Verständnis als auch Ihre Bereitschaft bekannt, jedwede der ausgewählten Aufgaben vorzuführen. Wenn in der Übungseinheit eine dieser Aufgaben behandelt wird, so wird ein/e Studierende/r zufällig für die Präsentation ausgewählt. Beurteilungsrelevant für die Präsentationsleistung sind u.a. Korrektheit, Klarheit, Prägnanz, Originalität.
  • Prüfungsimmanente LV: Anwesenheitspflicht, max. zweimalige Abwesenheit, keine schriftliche Abgabe bei Abwesenheit, kein Nachkreuzen, keine Anrechnung auf die 60%-Quote.
  • Allenfalls (sofern notwendig) schriftliche Abschlussklausur.
  • Eine Abmeldung ist bis 31. Oktober 2018 möglich, danach wird jedenfalls beurteilt.

Beurteilungsschema

Note/Grade Benotungsschema

Position im Curriculum

  • Lehramtsstudium Unterrichtsfach Mathematik (SKZ: 406, Version: 04W.7)
    • 2.Abschnitt
      • Fach: Algebra (LM 2.4.) (Pflichtfach)
        • Übungen zu Algebra ( 1.0h UE / 2.0 ECTS)
          • 311.142 Übungen zu Algebraische Strukturen (1.0h UE / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 17W.1)
    • Fach: Mathematik und Statistik (Wahlfach)
      • 3.2 Algebraische Strukturen ( 1.0h UE / 2.0 ECTS)
        • 311.142 Übungen zu Algebraische Strukturen (1.0h UE / 2.0 ECTS)
          Absolvierung im 5. Semester empfohlen
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 12W.1)
    • Fach: Mathematik und Statistik (Wahlfach)
      • Algebraische Strukturen ( 1.0h UE / 2.0 ECTS)
        • 311.142 Übungen zu Algebraische Strukturen (1.0h UE / 2.0 ECTS)
  • Bachelorstudium Technische Mathematik (SKZ: 201, Version: 17W.1)
    • Fach: Diskrete Mathematik (Pflichtfach)
      • 3.3 Algebraische Strukturen ( 1.0h UE / 2.0 ECTS)
        • 311.142 Übungen zu Algebraische Strukturen (1.0h UE / 2.0 ECTS)
          Absolvierung im 3. Semester empfohlen
  • Bachelorstudium Technische Mathematik (SKZ: 201, Version: 12W.2)
    • Fach: Diskrete Mathematik (ab 15W) (Pflichtfach)
      • Algebraische Strukturen ( 1.0h UE / 2.0 ECTS)
        • 311.142 Übungen zu Algebraische Strukturen (1.0h UE / 2.0 ECTS)
          Absolvierung im 3. Semester empfohlen

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Wintersemester 2019/20
  • 311.142 UE Übungen zu Algebraische Strukturen (1.0h / 2.0ECTS)
Wintersemester 2017/18
  • 311.142 UE Algebraische Strukturen (1.0h / 2.0ECTS)
Wintersemester 2016/17
  • 311.142 UE Übungen zu Algebraische Strukturen (1.0h / 2.0ECTS)
Wintersemester 2015/16
  • 311.142 UE Übungen zu Algebraische Strukturen (1.0h / 2.0ECTS)
Sommersemester 2015
  • 311.142 UE Übungen zu Algebraische Strukturen (1.0h / 2.0ECTS)
Sommersemester 2014
  • 311.142 UE Übungen zu Algebraische Strukturen, Gr. A (1.0h / 2.0ECTS)
Sommersemester 2013
  • 311.142 UE Übungen zu Algebraische Strukturen (1.0h / 2.0ECTS)