312.145 (17S) Ganzzahlige Optimierung

Sommersemester 2017

Anmeldefrist abgelaufen.

Erster Termin der LV
01.03.2017 10:00 - 12:30 , N.0.67
... keine weiteren Termine bekannt

Überblick

Lehrende/r
LV-Titel englisch
Integer Optimization
LV-Art
Vorlesung-Übung (prüfungsimmanente LV )
Semesterstunde/n
3.0
ECTS-Anrechungspunkte
5.0
Anmeldungen
13 (25 max.)
Organisationseinheit
Unterrichtssprache
es wurde keine Unterrichtssprache angegeben
LV-Beginn
01.03.2017
eLearning
zum Moodle-Kurs

LV-Beschreibung

Intendierte Lernergebnisse

Die Studierenden sind in der Lage Grundlagen, Methoden und Konzepte der Ganzzahligen Optimierung zu verstehen und anzuwenden. Sie sind vertraut mit Polyedertheorie und sind in der Lage praktische ganzzahlige Optimierungsprobleme zu modellieren und zu lösen.

Lehrmethodik

Tafelvortrag, Übungszettel.

Inhalt/e

  • Einleitung und Formulierungen
  • Polyedertheorie
  • Unimodularität
  • Relaxierungen
  • Branch and Bound
  • Schnittebenenverfahren
  • Column Generation
  • Matroide

Literatur

Georg L. Nemhauser, Laurence A. Wolsey: Integer and Combinatorial Optimization (Wiley) Laurence A. Wolsey: Integer Programming (Wiley)

Intendierte Lernergebnisse

After successful completion of the course students are able to understand and apply the basic notions, concepts, and methods of integer optimization. Moreover, they are familiar with the polyhedral theory and can model problems arising in practice.

Lehrmethodik

Blackboard, exercise sheets.

Inhalt/e

Introduction; modelling; polyhedral theory; relaxations; branch-and-bound; column generation.

Literatur

Georg L. Nemhauser, Laurence A. Wolsey: Integer and Combinatorial Optimization (Wiley) Laurence A. Wolsey: Integer Programming (Wiley)

Prüfungsinformationen

Prüfungsmethode/n

Schriftliche Prüfung zu Semesterende (kann bei neg. Beurteilung wiederholt werden) und Lösung von Übungsaufgaben (mind. 50%) während des Semesters. Jeder der zwei Prüfungsteile muss postitiv sein.

Prüfungsinhalt/e

Die in der Lehrveranstaltung durchbesprochenen Inhalte.

Beurteilungsschema

Note/Grade Benotungsschema

Position im Curriculum

  • Masterstudium Technische Mathematik (SKZ: 401, Version: 13W.1)
    • Fach: Diskrete Mathematik (Pflichtfach)
      • Ganzzahlige Optimierung ( 3.0h VU / 5.0 ECTS)
        • 312.145 Ganzzahlige Optimierung (3.0h VU / 5.0 ECTS)

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Sommersemester 2018
  • 312.145 VU Ganzzahlige Optimierung (3.0h / 5.0ECTS)
Sommersemester 2016
  • 312.145 VU Ganzzahlige Optimierung (3.0h / 5.0ECTS)
Sommersemester 2015
  • 312.145 VU Ganzzahlige Optimierung (3.0h / 5.0ECTS)
Sommersemester 2014
  • 312.145 VU Ganzzahlige Optimierung (3.0h / 5.0ECTS)