700.370 (14S) Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies

Sommersemester 2014

Anmeldefrist abgelaufen.

Erster Termin der LV
03.03.2014 10:00 - 12:00 , L4.1.02 ICT-Lab
... keine weiteren Termine bekannt

Überblick

Lehrende/r
LV-Titel englisch
Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies
LV-Art
Seminar (prüfungsimmanente LV )
Semesterstunde/n
2.0
ECTS-Anrechungspunkte
4.0
Anmeldungen
7 (20 max.)
Organisationseinheit
Unterrichtssprache
Englisch
LV-Beginn
10.03.2014
eLearning
zum Moodle-Kurs

LV-Beschreibung

Inhalt/e

In the lecture we deal with various aspects of pattern recognition and their applications in Image processing for INTELLIGENT VEHICLES TECHNOLOGIES and ROBOTICS. Different classification methods for both statistical and stochastical approaches will be presented.

Themen

  • * Introduction/Overview to Pattern Recognition
  • * Feature Selection ( Outlier Removal, Data Normalization , Missing data, Uncertainty Handling (Dempster Shafer))
  • * Feature Generation ( Principal components analysis , Kernel Principal components analysis)
  • * Clustering (Expectation Maximization, Nearest Neighbor, k-means , Self-organized maps)
  • * Supervised Learning (Perceptron, Perceptron learning algorithm, Multi-layered neural networks, back propagation, Linear Models, Nonlinear Models)
  • * Context Dependent Classification (Hidden Markov Models, Bayes Classifier)
  • * Model Evaluation
  • * Applications in Image processing / machine Vision
  • * Introduction to ROBOTICS
  • * Introduction to Advanced Driver assistance Systems (ADAS)

Lehrziel

* Advanced analysis skills and complex problem solving * Object detection and recognition * Advanced applications of artificial intelligence (audio/video patterns recognition)

Literatur

Based on the books: * Pattern Recognition - Sergios Theodoridis * Data Mining: Practical Machine Learning Tools and Techniques - Ian H. Witten, Eibe Frank

Prüfungsinformationen

Beurteilungskriterien/-maßstäbe

Paper + Project + Presentation

Beurteilungsschema

Note/Grade Benotungsschema

Position im Curriculum

  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 12W.2)
    • Fach: Bachelorarbeit, Studienzweig Ingenieurwissenschaften (Pflichtfach)
      • Seminar aus dem Bereich Ingenieurwissenschaften ( 2.0h SE / 3.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 3.0 ECTS)
          Absolvierung im 6. Semester empfohlen
  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 09W.2)
    • Fach: Bachelorarbeit und Seminar (Pflichtfach)
      • Seminar (zur Bachelorarbeit) ( 2.0h SE / 3.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 3.0 ECTS)
  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 06W.1)
    • Fach: Informationstechnische Vertiefung (Wahlfach)
      • Seminar ( 2.0h SE / 4.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 4.0 ECTS)
  • Masterstudium Information Technology (SKZ: 489, Version: 06W.3)
    • Fach: Technischer Schwerpunkt (Intelligent Transportation Systems) (Pflichtfach)
      • 1.1-1.3 Vorlesung mit Kurs oder Vorlesung mit Seminar ( 6.0h VK/VS / 12.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 4.0 ECTS)
  • Masterstudium Information Technology (SKZ: 489, Version: 06W.3)
    • Fach: Technischer Schwerpunkt (Media Engineering) (Pflichtfach)
      • 1.1-1.3 Vorlesung mit Kurs oder Vorlesung mit Seminar ( 6.0h VK/VS / 12.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 4.0 ECTS)
  • Masterstudium Information Technology (SKZ: 489, Version: 06W.3)
    • Fach: Technische Ergänzung I (Pflichtfach)
      • 2.3 Vorlesung mit Kurs oder Seminar ( 2.0h VK/SE / 4.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 4.0 ECTS)
  • Masterstudium Information Technology (SKZ: 489, Version: 06W.3)
    • Fach: Technische Ergänzung II (Pflichtfach)
      • 3.1-3.3 Vorlesung mit Kurs oder Vorlesung mit Seminar ( 6.0h VK/VS / 12.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 4.0 ECTS)
  • Masterstudium Information Technology (SKZ: 489, Version: 06W.3)
    • Fach: Research Track (Methodischer Schwerpunkt) (Pflichtfach)
      • 4.2'-4.3' Theoretisch-Methodische Lehrveranstaltung I/II ( 0.0h VO/VK/VS/KU/PS / 6.0 ECTS)
        • 700.370 Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h SE / 4.0 ECTS)

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Sommersemester 2019
  • 700.370 SE Seminar on Data Science in Intelligent Transportation (2.0h / 3.0ECTS)
Sommersemester 2017
  • 700.370 SE Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h / 4.0ECTS)
Sommersemester 2016
  • 700.370 SE Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h / 4.0ECTS)
Sommersemester 2015
  • 700.370 SE Seminar on Data mining and Pattern Recognition in Intelligent Vehicle Technologies (2.0h / 4.0ECTS)
Sommersemester 2013
  • 700.370 SE Seminar on Pattern Recognition in Intelligent Vehicle Technologies (2.0h / 4.0ECTS)