700.470 (14S) Artificial Vision

Sommersemester 2014

Anmeldefrist abgelaufen.

keine Termine für den LV
... keine weiteren Termine bekannt

Überblick

Lehrende/r
LV-Titel englisch
Artificial Vision
LV-Art
Vorlesung-Kurs (prüfungsimmanente LV )
Semesterstunde/n
2.0
ECTS-Anrechungspunkte
4.0
Anmeldungen
21 (50 max.)
Organisationseinheit
Unterrichtssprache
Englisch
LV-Beginn
07.05.2014
eLearning
zum Moodle-Kurs
Anmerkungen
Research Group Pervasive Computing @ NES
Seniorstudium Liberale
Ja

LV-Beschreibung

Inhalt/e

Detailed schedule:

 May 07, ICT-Lab L4.1.02, whole day

 10:00 – 13:00 Introduction

 14:00 – 16:00 Logical Architecture

 16:00 – 18:00 Change Detection

 
 May 08, lecture room L4.1.01 & ICT-LAB L4.1.02

 09:00 – 12:00 Active Vision –> lecture room L4.1.01

 13:00 – 14:00 Active Vision ->  ICT-LAB L4.1.02

 14:00 – 18:00 MATLAB -> ICT-LAB L4.1.02

 May 09, ICT-Lab L4.1.02, whole day

 09:00 – 11:00 Object Recognition

 11:00 – 13:00 Space Projection

 14:00 – 16:00 Network Reconfiguration

 16:00 – 18:00 MATLAB

May 13, ICT-Lab L4.1.02, whole day

 10:00 - 13:00 Event Analysis

 14:00 - 15:00 Person REID

 15:00 – 18:00 Projects

Mode of exam:

1)   Matlab Projects : Students will be asked to give a 10 minutes presentation on a chosen computer vision problem. Then a small Matlab project together with a scientific description of the proposed solution has to be delivered before first exam date.

 and/or

2)   Written exams: 2 standard written exams (duration 2hrs each)

Themen
  • * Introduction
  • * Architecture of an artificial vision systems
  • * Low level processing (object segmentation, object detection, etc.): Image differencing, Background Updating, Thresholding, Image registration, Feature based image registration
  • * Middle level processing (object recognition, object tracking, etc.): Space projection, Machine learning for object recognition
  • * High level processing (behaviour analysis, event detection, etc.): Architecture for behaviour analysis, Simple & complex events, Feature extraction, Trajectory analysis, Clustering, Decision making
  • * Network reconfiguration: Modeling of a sensor network, Resources Optimization
  • * Matlab Laboratory; Change Detection, Image Mapping, Image Registration

Prüfungsinformationen

Beurteilungskriterien/-maßstäbe