840.105 (24S) Ergänzungsprüfung Mathematik
Überblick
- Lehrende/r
- LV-Titel englisch Supplementary Exam Mathematics
- LV-Art Fachprüfung
- LV-Modell Onlinelehrveranstaltung
- Semesterstunde/n 0.0
- ECTS-Anrechnungspunkte 0.0
- Anmeldungen 58
- Organisationseinheit
- Unterrichtssprache Englisch
- LV-Beginn 14.03.2024
- eLearning zum Moodle-Kurs
Zeit und Ort
Liste der Termine wird geladen...
LV-Beschreibung
Intendierte Lernergebnisse
To be able to solve basic tasks on the following topics:
- derivatives;
- maximum and minimum of a function; graph sketching;
- antiderivatives; definite integrals;
- calculating the area under a curve;
- limit of a sequence.
Lehrmethodik inkl. Einsatz von eLearning-Tools
Self-learning, see the moodle page of the course.
Inhalt/e
See the moodle page of the course.
Literatur
For example,
- G.B. Thomas, M.D. Weir, J.R. Hass. Thomas’ Calculus.
Link auf weitere Informationen
https://moodle.aau.at/course/view.php?id=39195Prüfungsinformationen
Im Fall von online durchgeführten Prüfungen sind die Standards zu beachten, die die technischen Geräte der Studierenden erfüllen müssen, um an diesen Prüfungen teilnehmen zu können.
Prüfungsmethode/n
The exam takes place in writing (online or in presence) . The exam duration is 2 hours.
Please carefully read the technical information about the exam on the moodle-page of the course.
Prüfungsinhalt/e
To be prepared for the exam, you need to repeat the following topics:
- derivatives;
- maximum and minimum of a function; graph sketching;
- antiderivatives; definite integrals;
- calculating the area under a curve;
- limit of a sequence.
You can find this material, for example, the following book:
- G.B. Thomas, M.D. Weir, J.R. Hass. Thomas’ Calculus.
The table of contents of the above book with marked topics and examples of exam tasks can be found on Moodle.
Beurteilungskriterien/-maßstäbe
In order to pass the exam, at least 50% of the points must be achieved.
Beurteilungsschema
Note BenotungsschemaPosition im Curriculum
- Universitätslehrgang Vorstudienlehrgang zur Vorbereitung auf Ergänzungsprüfungen
(SKZ: 840, Version: 17W.2)
-
Fach: Mathematik
(Pflichtfach)
-
Ergänzungsprüfung Mathematik (
0.0h EP / 0.0 ECTS)
- 840.105 Ergänzungsprüfung Mathematik (0.0h FA / 0.0 ECTS)
-
Ergänzungsprüfung Mathematik (
0.0h EP / 0.0 ECTS)
-
Fach: Mathematik
(Pflichtfach)