700.205 (24S) Topics in Robotics: Visual Perception
Überblick
- Lehrende/r
- LV-Titel englisch Topics in Robotics: Visual Perception
- LV-Art Vorlesung
- LV-Modell Präsenzlehrveranstaltung
- Semesterstunde/n 2.0
- ECTS-Anrechnungspunkte 3.0
- Anmeldungen 18
- Organisationseinheit
- Unterrichtssprache Englisch
- LV-Beginn 22.05.2024
- eLearning zum Moodle-Kurs
Zeit und Ort
LV-Beschreibung
Intendierte Lernergebnisse
The focus of this lecture is to provide a detailed overview of how visual perception is used in robotics to derive information of the environment a robot is operating in.
The class dives into the full image processing pipeline - from image formation to advanced computer vision methods, such as i.e. 3D perception, motion estimation, and scene reconstruction, with examples from autonomous robotic systems on Earth and in Space. An additional aspect will be an introduction on how to simulate vision sensors to enable the evaluation of algorithms that include visual perception.
At the end of the lecture, students will have a deep understanding of how images from on-board cameras are used in robotic visual perception.
An opportunity to apply the acquired knowledge in selected research projects is provided by the accompanying practical class “Hands on Robotics: Visual Perception”.
Lehrmethodik
Additional to the material presented in the lecture, a literature collection including research papers and books will be provided for students who are interested in extended study.
It is suggested to take the accompanying practical course (Labor) to this lecture. Both are strongly linked such that the learned theory can immediately put into practice.
Inhalt/e
- Image formation – biological vision and camera systems
- Low-level image processing
- Visual features, feature detection and feature matching
- 2 view geometry and outlier rejection
- Stereo and multi-view vision for 3D perception
- Visual odometry and SLAM systems
- Mapping
- Object detection/recognition
- Modelling vision sensors in simulation and computer graphics
Erwartete Vorkenntnisse
- Good knowledge of Mathematics (linear algebra).
- Basic knowledge in Robotics
Curriculare Anmeldevoraussetzungen
Literatur
Books:
- Richard Szeliski: Computer Vision: Algorithms and Applications, 2nd ed. Paper or online.
- David A. Forsyth: Computer vision: A modern approach. Paper or online.
Link auf weitere Informationen
Prüfungsinformationen
Prüfungsmethode/n
There will be a final written exam at the end of the lecture.
Prüfungsinhalt/e
All contents taught during the lecture is part of the exam.
Beurteilungskriterien/-maßstäbe
The scored points in the exam reflect the grades from 1-5. With 50% or more of the achievable points, the exam is passed.
Beurteilungsschema
Note BenotungsschemaPosition im Curriculum
- Bachelorstudium Informationstechnik
(SKZ: 289, Version: 22W.1)
-
Fach: Informationstechnische Vertiefung
(Wahlfach)
-
11a.4 Ausgewählte LVen der Informationstechnik: Chip Design, Einf.in die Multimedia-Technik, Fundamentals of Image Processing, Measurement Signal Processing, Mobile Robot Programming, Systemsicherheit (
0.0h VO, VC, KS, UE / 6.0 ECTS)
- 700.205 Topics in Robotics: Visual Perception (2.0h VO / 3.0 ECTS) Absolvierung im 3., 4., 5., 6. Semester empfohlen
-
11a.4 Ausgewählte LVen der Informationstechnik: Chip Design, Einf.in die Multimedia-Technik, Fundamentals of Image Processing, Measurement Signal Processing, Mobile Robot Programming, Systemsicherheit (
0.0h VO, VC, KS, UE / 6.0 ECTS)
-
Fach: Informationstechnische Vertiefung
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
- 700.205 Topics in Robotics: Visual Perception (2.0h VO / 3.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
- 700.205 Topics in Robotics: Visual Perception (2.0h VO / 3.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Autonomous Systems and Robotics: Advanced (ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (siehe Anhang 3) (
0.0h VK, VO / 30.0 ECTS)
- 700.205 Topics in Robotics: Visual Perception (2.0h VO / 3.0 ECTS)
-
Wahl aus dem LV-Katalog (siehe Anhang 3) (
0.0h VK, VO / 30.0 ECTS)
-
Fach: Autonomous Systems and Robotics: Advanced (ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 22W.1)
-
Fach: Information and Communicatons Enginnering: Supplements
(Wahlfach)
-
1.3b Ausgewählte Lehrveranstaltungen (siehe Curriculum Seite 16) (
0.0h VC, KS / 14.0 ECTS)
- 700.205 Topics in Robotics: Visual Perception (2.0h VO / 3.0 ECTS)
-
1.3b Ausgewählte Lehrveranstaltungen (siehe Curriculum Seite 16) (
0.0h VC, KS / 14.0 ECTS)
-
Fach: Information and Communicatons Enginnering: Supplements
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 22W.1)
-
Fach: Autonomous Systems and Robotics: Advanced
(Wahlfach)
-
2.2 Further Lectures for ASR Advanced (
2.0h VC / 4.0 ECTS)
- 700.205 Topics in Robotics: Visual Perception (2.0h VO / 3.0 ECTS)
-
2.2 Further Lectures for ASR Advanced (
2.0h VC / 4.0 ECTS)
-
Fach: Autonomous Systems and Robotics: Advanced
(Wahlfach)