312.239 (23W) Stochastic Differential Equations, exercises

Wintersemester 2023/24

Anmeldefrist abgelaufen.

Erster Termin der LV
05.10.2023 14:00 - 15:00 N.2.01 On Campus
... keine weiteren Termine bekannt

Überblick

Lehrende/r
LV-Titel englisch Stochastic Differential Equations, exercises
LV-Art Übung (prüfungsimmanente LV )
LV-Modell Präsenzlehrveranstaltung
Semesterstunde/n 1.0
ECTS-Anrechnungspunkte 2.0
Anmeldungen 7 (25 max.)
Organisationseinheit
Unterrichtssprache Englisch
LV-Beginn 05.10.2023
eLearning zum Moodle-Kurs

Zeit und Ort

Liste der Termine wird geladen...

LV-Beschreibung

Intendierte Lernergebnisse

Understanding the theoretical basis needed for the construction of stochastic integrals and for the study of stochastic differential equations (martingales in continuous time, stochastic integrals, Itô's formula)

Knowledge on stochastic differential equations (strong and weak solutions, existence and uniqueness of solutions)

Ability to solve a given stochastic differential equation (explicit solutions, numerical methods)

Lehrmethodik

Each exercise class starts with a small quiz. This quiz addresses the contents covered in the last class. The exercise in the quiz will refer to the exercises on the preceding sheet. It will, however, be shorter and easier.

After that, the students work on the current exercise sheet. This time should be used to discuss open problems and questions regarding the exercises. Hence, the students are expected to be familiar with the exercises and have begun working on them. The exercise sheet will not be solvable within the time of class! To assist the students, the lecturer will provide tips and additional information.  

Solutions to the exercises will be available online via moodle a few days later. The students are expected to correct their exercises using the solutions on their own.

The first lesson on October 05, 2023, will be used to discuss the format of the exercise class and to complete a few simple exercises together. There won’t be a quiz and there is no need for preparation!

Inhalt/e

Theoretical basis:
Martingales in continuous time
Stochastic integrals
Itô's formula

Stochastic differential equations:
Strong and weak solutions
Existence and uniqueness of solutions
Explicit solutions
Numerical methods

Erwartete Vorkenntnisse

Stochastics 2
Stochastic processes

Literatur

Bernt Oksendal: Stochastic Differential Equations, Springer, 2010.

Prüfungsinformationen

Im Fall von online durchgeführten Prüfungen sind die Standards zu beachten, die die technischen Geräte der Studierenden erfüllen müssen, um an diesen Prüfungen teilnehmen zu können.

Prüfungsmethode/n

A total of 100 points can be reached in this course. 40 points are awarded for quizzes, and 60 points are awarded for class participation.

There will be a total of 10 quizzes (beginning on October 12, 2023). They each count five points. Only the 8 quizzes with the highest number of points are taken into account at the end.

Starting from October 12, 2023, the participation will be evaluated weekly according to the following scheme:
0 points: The student is absent or does not participate.
2.5 points: The student barely participates.
5 points:  The student participates.
7.5 points: The student participates actively.
Only the 8 participations with the highest number of points are taken into account.

Only the top 8 quizzes and top 8 participations are taken into account at the end.

The marks are calculated as follows:
[87.5 , 100] P. -> 1
[75 , 87.5) P. -> 2
[62.5 , 75) P. -> 3
[50 , 62.5) P. -> 4
[0 , 50) P. -> 5

Prüfungsinhalt/e

Everything that is covered in the lecture and hence also in the exercise class.
If additional reading is required for the lecture this will be clearly announced in the lecture.

Beurteilungskriterien/-maßstäbe

The mark depends on the number of points the student achieves in the exercise class.

Sign-out without grading is possible until October 31, 2023 by sending an e-mail to verena.schwarz@aau.at.

Beurteilungsschema

Note Benotungsschema

Position im Curriculum

  • Masterstudium Mathematics (SKZ: 401, Version: 18W.1)
    • Fach: Applied Statistics (Wahlfach)
      • 5.6 Stochastic Differential Equations ( 1.0h UE / 2.0 ECTS)
        • 312.239 Stochastic Differential Equations, exercises (1.0h UE / 2.0 ECTS)
  • Masterstudium Mathematics (SKZ: 401, Version: 18W.1)
    • Fach: Applied Mathematics (Wahlfach)
      • Lehrveranstaltungen aus den Vertiefungsfächern ( 0.0h XX / 12.0 ECTS)
        • 312.239 Stochastic Differential Equations, exercises (1.0h UE / 2.0 ECTS)
  • Masterstudium Mathematics (SKZ: 401, Version: 22W.1)
    • Fach: Statistics and Probability (Wahlfach)
      • 6.7 Stochastic Differential Equations ( 1.0h UE / 2.0 ECTS)
        • 312.239 Stochastic Differential Equations, exercises (1.0h UE / 2.0 ECTS)
          Absolvierung im 1., 2., 3. Semester empfohlen
  • Masterstudium Mathematics (SKZ: 401, Version: 22W.1)
    • Fach: Applied Mathematics (Wahlfach)
      • 7.1 Wahl von weiteren Lehrveranstaltungen aus den Vertiefungsfächern ( 0.0h XX / 12.0 ECTS)
        • 312.239 Stochastic Differential Equations, exercises (1.0h UE / 2.0 ECTS)
          Absolvierung im 2., 3. Semester empfohlen

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Wintersemester 2020/21
  • 312.239 UE Stochastic Differential Equations, exercises (1.0h / 2.0ECTS)