700.111 (23S) Microelectronics

Sommersemester 2023

Anmeldefrist abgelaufen.

Erster Termin der LV
06.03.2023 12:00 - 14:00 B04.1.06 On Campus
... keine weiteren Termine bekannt

Überblick

Lehrende/r
LV-Titel englisch Microelectronics
LV-Art Kurs (prüfungsimmanente LV )
LV-Modell Präsenzlehrveranstaltung
Semesterstunde/n 2.0
ECTS-Anrechnungspunkte 3.0
Anmeldungen 19 (50 max.)
Organisationseinheit
Unterrichtssprache Englisch
LV-Beginn 06.03.2023
eLearning zum Moodle-Kurs

Zeit und Ort

Liste der Termine wird geladen...

LV-Beschreibung

Intendierte Lernergebnisse

• Mastery of the application of classical laws / theorems of circuit technology when calculating many electrical and / or electronic circuits. Comparison of the theoretical results with the results of the electronic simulation software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.)

• Mastery of theoretical calculations in the field of semiconductor physics. Understand the theoretical solutions to many exercises based on semiconductor technology.

• Mastery of the calculation of many electronic circuits with diodes. Comparison of the theoretical results with the results of the electronic software software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.)

• Calculation of many electronic circuits with MOSFETs and CMOS transistors. Comparison of the theoretical results with the results of the electronic software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.)

• Application of CMOS transistors in digital circuit design: CMOS logic gates; CMOS flip-flops.

• Calculation of many electronic circuits with operational amplifiers. Comparison of the theoretical results with the results of the electronic software software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.).

Lehrmethodik


• The lecture (KS) is held on-campus.

• The slides are available for the entire lecture. These slides are uploaded to the MOODLE system.

Very important note 1:
• For each chapter, selected exercises/tasks are suggested to be solved by the students.
• During the lecture (KS), the lecturer will systematically explain the procedure that leads to the exact/correct solutions to the proposed exercises/tasks.
• Students will use any simulation software at their convenience (e.g. PSpice, LT Spice, MultiSim, PartSim, CircuitLogix etc.) to design the electronic circuits proposed in this lecture.

Benchmarking: Verification and validation of the theoretical results obtained
• In order to validate the theoretical results obtained, the students must always compare the theoretical results (obtained through calculations) with the experimental results (obtained through the design of circuits with a simulation software of their choice).

Very important note 2:
• Please note that the comparison between "theoretical results" and "experimental results" is very important and is mandatory for "all assignments/homework" and "all projects" submitted by students to be taken into account in the overall grade of the lecture (KS).


Inhalt/e

Chapter 1. Calculation of electrical circuits (theory) and design with selected electronic simulation software (experiment). Comparison of "theoretical results" with "experimental results".

Chapter 2. Study of the dynamics of charge carriers in a semiconductor- Theoretical calculations in the field of semiconductor physics: Case study of N-doping and P-doping.

Chapter 3. PN junctions (Diodes) and applications: Calculation of electronic circuits with diodes (theory) and design with selected electronic simulation software (experiment). Comparison of "theoretical results" with "experimental results".

Chapter 4. MOSFET- circuits and concrete applications: Calculation of electronic circuits with MOSFETs (theory) and design with selected electronic simulation software (experiment). Comparison of "theoretical results" with "experimental results".

Chapter 5. CMOS circuits and applications: Calculation of CMOS circuits (theory) and design with selected electronic simulation software (experiment). Comparison of "theoretical results" with "experimental results".

Chapter 6. Circuits with operational amplifiers (Op-Amps) and applications: Calculation of circuits with Op-Amps (theory) and design with selected electronic simulation software (experiment). Comparison of "theoretical results" with "experimental results".

Literatur

Important note. The digital versions of books below are available online for free (see Google)

  • Jacob Millman & Christos, C. Halkias Jacob Millman, & Christos C. Halkias, « Electronic Devices & Circuits », McGraw-Hill 1967. (Update version of Jan 3, 2012)
  • G.Fontaine Diodes & Transistors Philips, « Diodes & Transistors » Technical Library 1963. (Update version of Aug 10, 2011)
  • Ian R. Sinclair, « Practical Electronics Handbook », Newnes Technical Books ( Butterworth & Co.(Publishers) Ltd.) 1980
  • W.W. Smith, «Electronics for Technician Engineers », Hutchinson Educational 1970.

Prüfungsinformationen

Im Fall von online durchgeführten Prüfungen sind die Standards zu beachten, die die technischen Geräte der Studierenden erfüllen müssen, um an diesen Prüfungen teilnehmen zu können.

Prüfungsmethode/n

• The final exam takes place on-campus in the form of a written exam.

• The total duration of the final exam is 3 to 4 hours. 

Prüfungsinhalt/e

• The questions for the final exam cover all chapters of the lecture (KS).

Beurteilungskriterien/-maßstäbe

• The final exam (i.e., a written exam) corresponds to 50% of the overall grade of the lecture (KS).

• Taking part in the lecture (KS) and answering questions correspond to the oral examination. This is evaluated with 25% of the overall grade of the lecture.

• All assignments (i.e., homework) correspond to 25% of the overall grade of the lecture.

Prüfungsmethode/n

• The final exam takes place on-campus in the form of a written exam.

• The total duration of the final exam is 3 to 4 hours. 

Prüfungsinhalt/e

• The questions for the final exam cover all chapters of the lecture (KS).

Beurteilungskriterien/-maßstäbe

The final grade of the lecture (KS) is obtained as follows:

1. Participation in the lecture and answering questions correspond to the oral examination. This is evaluated with 25% of the overall grade of the lecture (KS).

2. All assignments (i.e., homework) correspond to 25% of the overall grade of the lecture (KS).

3. Final projects (to be defined by the lecturer) correspond to 50% of  the final grade of the lecture (KS). 

Beurteilungsschema

Note Benotungsschema

Position im Curriculum

  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 22W.1)
    • Fach: Elektronik und Schaltungen (Pflichtfach)
      • 6.1 Mikroelektronik ( 0.0h KS / 3.0 ECTS)
        • 700.111 Microelectronics (2.0h KS / 3.0 ECTS)
          Absolvierung im 2. Semester empfohlen
  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 17W.1)
    • Fach: Elektronik und Schaltungen (Pflichtfach)
      • 5.1 Mikroelektronik ( 0.0h KS / 3.0 ECTS)
        • 700.111 Microelectronics (2.0h KS / 3.0 ECTS)
          Absolvierung im 2. Semester empfohlen
  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 12W.2)
    • Fach: Elektronik und Schaltungen (Pflichtfach)
      • Mikroelektronik ( 2.0h KU / 3.0 ECTS)
        • 700.111 Microelectronics (2.0h KS / 3.0 ECTS)
          Absolvierung im 2. Semester empfohlen
  • Bachelorstudium Robotics and Artificial Intelligence (SKZ: 295, Version: 22W.1)
    • Fach: Design and Modeling Tools for Robotics (Wahlfach)
      • 8.2 Design and Modeling Tools for Robotics ( 0.0h VO, VC, UE, KS / 12.0 ECTS)
        • 700.111 Microelectronics (2.0h KS / 3.0 ECTS)

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Sommersemester 2024
  • 700.111 KS Microelectronics (2.0h / 3.0ECTS)
Sommersemester 2022
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2021
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2020
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2019
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2018
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2017
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2016
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2015
  • 700.111 KU Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2014
  • 700.111 KU Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2013
  • 700.111 KU Mikroelektronik (2.0h / 3.0ECTS)