700.111 (22S) Mikroelektronik

Sommersemester 2022

Anmeldefrist abgelaufen.

Erster Termin der LV
07.03.2022 12:00 - 14:00 Online Off Campus
... keine weiteren Termine bekannt

Überblick

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Präsenz-Lehreveranstaltungen und Umstellung auf Online-Prüfungen) erforderlich sein.

Weitere Informationen zum Lehrbetrieb vor Ort finden Sie unter: https://www.aau.at/corona.
Lehrende/r
LV-Titel englisch Micro electronics
LV-Art Kurs (prüfungsimmanente LV )
LV-Modell Onlinelehrveranstaltung
Semesterstunde/n 2.0
ECTS-Anrechnungspunkte 3.0
Anmeldungen 18 (50 max.)
Organisationseinheit
Unterrichtssprache Englisch
LV-Beginn 07.03.2022
eLearning zum Moodle-Kurs

Zeit und Ort

Beachten Sie bitte, dass sich aufgrund von COVID-19-Maßnahmen die derzeit angezeigten Termine noch ändern können.
Liste der Termine wird geladen...

LV-Beschreibung

Intendierte Lernergebnisse

• Mastery of the application of classical laws / theorems of circuit technology when calculating many electrical and / or electronic circuits. Comparison of the theoretical results with the results of the electronic simulation software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.)

• Mastery of theoretical calculations in the field of semiconductor physics. Understand the theoretical solutions to many exercises based on semiconductor technology.

• Mastery of the calculation of many electronic circuits with diodes. Comparison of the theoretical results with the results of the electronic software software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.)

• Calculation of many electronic circuits with MOSFETs and CMOS transistors. Comparison of the theoretical results with the results of the electronic software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.)

• Application of CMOS transistors in digital circuit design: CMOS logic gates; CMOS flip-flops.

• Calculation of many electronic circuits with operational amplifiers. Comparison of the theoretical results with the results of the electronic software software (PSpice, LT Spice, MultiSim, PartSim, CircuitLogix, etc.).

Lehrmethodik inkl. Einsatz von eLearning-Tools

• The lecture is held ONLINE.

• The slides are available for the entire lecture. These slides are uploaded to the MOODLE system.

Very important note:
• For each chapter, selected exercises/tasks are suggested to be solved by the students.
• During the lecturer, the lecturer will systematically explain the procedure that leads to the exact/correct solutions to the proposed exercises/tasks.
• Students will use any simulation software at their convenience (e.g. PSpice, LT Spice, MultiSim, PartSim, CircuitLogix etc.) to design the electronic circuits proposed in this lecture.

Benchmarking: Verification and validation of the theoretical results obtained
• In order to validate the theoretical results obtained, the students always compare the theoretical results (obtained through calculations) with the experimental results (obtained through the design of circuits with a simulation software of their convenience).

Inhalt/e

Chapter 1. Calculation of electrical circuits (theory) and design with selected electronic simulation software (experiment). Comparison of theoretical and experimental results.

Chapter 2. Study of the dynamics of charge carriers in a semiconductor- Theoretical calculations in the field of semiconductor physics: Case study of N-doping and P-doping.

Chapter 3. PN junctions (Diodes) and applications: Calculation of electronic circuits with diodes (theory) and design with selected electronic simulation software (experiment). Comparison of theoretical and experimental results.

Chapter 4. MOSFET- circuits and concrete applications: Calculation of electronic circuits with MOSFETs (theory) and design with selected electronic simulation software (experiment). Comparison of theoretical and experimental results.

Chapter 5. CMOS circuits and applications: Calculation of CMOS circuits (theory) and design with selected electronic simulation software (experiment). Comparison of theoretical and experimental results.

Chapter 6. Circuits with operational amplifiers (Op-Amps) and applications: Calculation of circuits with Op-Amps (theory) and design with selected electronic simulation software (experiment). Comparison of theoretical and experimental results.

Literatur

Important note. The digital versions of books below are available online for free (see Google)

  • Jacob Millman & Christos, C. Halkias Jacob Millman, & Christos C. Halkias, « Electronic Devices & Circuits », McGraw-Hill 1967. (Update version of Jan 3, 2012)
  • G.Fontaine Diodes & Transistors Philips, « Diodes & Transistors » Technical Library 1963. (Update version of Aug 10, 2011)
  • Ian R. Sinclair, « Practical Electronics Handbook », Newnes Technical Books ( Butterworth & Co.(Publishers) Ltd.) 1980
  • W.W. Smith, «Electronics for Technician Engineers », Hutchinson Educational 1970.

Prüfungsinformationen

Im Fall von online durchgeführten Prüfungen sind die Standards zu beachten, die die technischen Geräte der Studierenden erfüllen müssen, um an diesen Prüfungen teilnehmen zu können.

Beurteilungskriterien/-maßstäbe

The final grade is obtained as follows:

1. Participation in the lecture and answering questions correspond to the oral examination. This is assessed with 25% of the final grade of the lecture.

2. The homework correspond to 25% of the overall grade of the lecture.

3. Final projects (to be defined by the lecturer) correspond to 50% of  the final grade of the lecture. 

Beurteilungsschema

Note Benotungsschema

Position im Curriculum

  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 17W.1)
    • Fach: Elektronik und Schaltungen (Pflichtfach)
      • 5.1 Mikroelektronik ( 0.0h KS / 3.0 ECTS)
        • 700.111 Mikroelektronik (2.0h KS / 3.0 ECTS)
          Absolvierung im 2. Semester empfohlen
  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 12W.2)
    • Fach: Elektronik und Schaltungen (Pflichtfach)
      • Mikroelektronik ( 2.0h KU / 3.0 ECTS)
        • 700.111 Mikroelektronik (2.0h KS / 3.0 ECTS)
          Absolvierung im 2. Semester empfohlen

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Sommersemester 2024
  • 700.111 KS Microelectronics (2.0h / 3.0ECTS)
Sommersemester 2023
  • 700.111 KS Microelectronics (2.0h / 3.0ECTS)
Sommersemester 2021
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2020
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2019
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2018
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2017
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2016
  • 700.111 KS Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2015
  • 700.111 KU Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2014
  • 700.111 KU Mikroelektronik (2.0h / 3.0ECTS)
Sommersemester 2013
  • 700.111 KU Mikroelektronik (2.0h / 3.0ECTS)