Stammdaten

Titel: Content-based retrieval in videos from laparoscopic surgery
Beschreibung:

In the field of medical endoscopy more and more surgeons are changing over to record and store videos of their endoscopic procedures for long-term archival. These endoscopic videos are a good source of information for explanations to patients and follow-up operations. As the endoscope is the "eye of the surgeon", the video shows the same information the surgeon has seen during the operation, and can describe the situation inside the patient much more precisely than an operation report would do. Recorded endoscopic videos can also be used for training young surgeons and in some countries the long-term archival of video recordings from endoscopic procedures is even enforced by law. A major challenge, however, is to efficiently access these very large video archives for later purposes. One problem, for example, is to locate specific images in the videos that show important situations, which are additionally captured as static images during the procedure. This work addresses this problem and focuses on contentbased video retrieval in data from laparoscopic surgery. We propose to use feature signatures, which can appropriately and concisely describe the content of laparoscopic images, and show that by using this content descriptor with an appropriate metric, we are able to efficiently perform content-based retrieval in laparoscopic videos. In a dataset with 600 captured static images from 33 hours recordings, we are able to find the correct video segment for more than 88% of these images.

Schlagworte:
Typ: Angemeldeter Vortrag
Homepage: http://spie.org/conferences-and-exhibitions/medical-imaging?wt.mc_id=rmicaw
Veranstaltung: SPIE Medical Imaging 2016 (San Diego)
Datum: 27.02.2016

Zuordnung

Organisation Adresse
Fakultät für Technische Wissenschaften
 
Institut für Informationstechnologie
Universitaetsstr. 65-67
9020 Klagenfurt am Wörthersee
Österreich
   martina.steinbacher@uni-klu.ac.at
http://itec.aau.at/
zur Organisation
Universitaetsstr. 65-67
AT - 9020  Klagenfurt am Wörthersee

Kategorisierung

Sachgebiete
  • 102020 - Medizinische Informatik (305905)
Forschungscluster Kein Forschungscluster ausgewählt
Vortragsfokus
  • Science to Science (Qualitätsindikator: III)
Klassifikationsraster der zugeordneten Organisationseinheiten:
TeilnehmerInnenkreis
  • Überwiegend international
Publiziert?
  • Ja
Arbeitsgruppen
  • Distributed Multimedia Systems

Kooperationen

Keine Partnerorganisation ausgewählt