Titel: Resilient Self-Calibration in Distributed Visual Sensor Networks

Today, camera networks are pervasively used in

smart environments such as intelligent homes, industrial automa-

tion or surveillance. These applications often require cameras to

be aware of their spatial neighbors or even to operate on a

common ground plane. A major concern in the use of sensor

networks in general is their robustness and reliability even in

the presence of attackers.

This paper addresses the challenge of detecting malicious

nodes during the calibration phase of camera networks. Such

a resilient calibration enables robust and reliable localization

results and the elimination of attackers right after the network

deployment. Specifically, we consider the problem of identifying

subverted nodes which manipulate calibration data and can not

be detected by standard cryptographic methods. The experiments

in our network show that our self-calibration algorithm enables

location-unknown cameras to successfully detect malicious nodes

while autonomously calibrating the network.

Schlagworte: Visual sensor networksSecurity and privacy issuesDistributed trust generationSelf-calibration
Typ: Angemeldeter Vortrag
Veranstaltung: International Conference on Distributed Computing in Sensor Systems (Santorini Island)
Datum: 30.05.2019


Organisation Adresse
Fakultät für Technische Wissenschaften
Institut für Vernetzte und Eingebettete Systeme
Universitätsstraße 65-67
9020  Klagenfurt am Wörthersee
zur Organisation
Universitätsstraße 65-67
AT - 9020  Klagenfurt am Wörthersee


  • 202036 - Sensorik
  • 102025 - Verteilte Systeme
  • 202017 - Embedded Systems
  • 202022 - Informationstechnik
  • 102021 - Pervasive Computing
Forschungscluster Kein Forschungscluster ausgewählt
  • Science to Science (Qualitätsindikator: I)
Klassifikationsraster der zugeordneten Organisationseinheiten:
  • Überwiegend international
  • Ja
Arbeitsgruppen Keine Arbeitsgruppe ausgewählt


Keine Kooperationspartner ausgewählt