Titel: Self-organising Zooms for Decentralised Redundancy Management in Visual Sensor Networks

When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences

Publikationstyp: Beitrag in Sammelwerk (Autorenschaft)
Art der Veröffentlichung Online Publikation
Erschienen in: Proceedings of the Ninth International Conferences on Self-Adaptive and Self-Organizing Systems
Proceedings of the Ninth International Conferences on Self-Adaptive and Self-Organizing Systems
zur Publikation
 ( IEEE; G. Sullivan, E. Hart, J. Steghöfer )
Erscheinungsdatum: 2015
Titel der Serie: -
Bandnummer: -
Erstveröffentlichung: Ja
Version: -
Seite: S. 41 - 50
Gesamtseitenanzahl: 10 S.


AC-Nummer: -
Open Access
  • Auf einem Repositorium abgelegt


Organisation Adresse
Fakultät für Technische Wissenschaften
Institut für Vernetzte und Eingebettete Systeme
Universitätsstraße 65-67
9020  Klagenfurt am Wörthersee
zur Organisation
Universitätsstraße 65-67
AT - 9020  Klagenfurt am Wörthersee


  • 1020 - Informatik
  • 2020 - Elektrotechnik, Elektronik, Informationstechnik
  • Selbstorganisierende Systeme
Peer Reviewed
  • Ja
  • Science to Science (Qualitätsindikator: I)
Klassifikationsraster der zugeordneten Organisationseinheiten:
Arbeitsgruppen Keine Arbeitsgruppe ausgewählt


Keine Kooperationspartner ausgewählt

Beiträge der Publikation

Keine verknüpften Publikationen vorhanden