Stammdaten

Robust multi-scale orientation estimation: Directional filter bank based approach
Untertitel:
Kurzfassung:

Orientation estimation is considered as an important task in many subsequent pattern recognition and image enhancement systems. In a noisy environment, the gradient-based estimator provides poor results. A pre-smoothing Gaussian function with an appropriate scale is conventionally used to get improved gradients. Later on, a family of pre-smoothing Gaussian functions with a range of scales is employed for estimation, this is referred to as multi-scale orientation estimator. To provide groundwork for comparison, a more formal framework of multi-scale orientation estimation, based on scale-space axioms, in spatial domain is presented. Then for improvement purposes a Fourier domain approach, where directional filter bank (DFB) structure is embedded in multi-scale orientation estimation framework, is proposed. This is referred to as multi-scale DFB approach. The paper presents the comparison work for estimation of local orientations using multi-scale approaches both in spatial and Fourier domain. In the Fourier-domain approach, two linear combinations are deployed, one across the directional image, and the other across the scales. This is opposed to only one linear combination across the scales, used in simple spatial domain techniques. Further more, the DFB-based Fourier domain approach extracts the best local orientation by comparing and contrasting all possible orientations with their respective strength measures. The strength measure used in Fourier method is based on local variance, free from inaccurate gradient calculation. Simulations are conducted over noisy test images as well as real fingerprints. Our objective results indicate that multi-scale Fourier domain approach always yields better estimates at variable level of noise as compared to stand alone multi-scale spatial domain approaches. The improvements made by Fourier domain estimate can largely be attributed to the use of double linear combination both across the directional bands and across the scales.

Schlagworte:
Publikationstyp: Beitrag in Zeitschrift (Autorenschaft)
Art der Veröffentlichung Printversion
Erschienen in: Applied Mathematics and Computation
Applied Mathematics and Computation
zur Publikation
 ( Elsevier B.V.; )
Erscheinungdatum: 01.09.2014
Titel der Serie: -
Bandnummer: 242
Heftnummer: -
Erstveröffentlichung: Ja
Seite: S. 814 - 824

Identifikatoren

ISBN: -
ISSN: 0096-3003
DOI: http://dx.doi.org/10.1016/j.amc.2014.06.071
AC-Nummer: -
Homepage: http://www.sciencedirect.com/science/article/pii/S0096300314009151
Open Access
  • Kein Open-Access

Zuordnung

Organisation Adresse
Fakultät für Technische Wissenschaften
 
Institut für Vernetzte und Eingebettete Systeme
Universitätsstraße 65-67
9020  Klagenfurt am Wörthersee
Österreich
  -993640
   kornelia.lienbacher@aau.at
https://nes.aau.at/
zur Organisation
Universitätsstraße 65-67
AT - 9020  Klagenfurt am Wörthersee

Kategorisierung

Sachgebiete
  • 202022 - Informationstechnik
Forschungscluster
  • Selbstorganisierende Systeme
Zitationsindex
  • Science Citation Index Expanded (SCI Expanded)
Informationen zum Zitationsindex: Master Journal List
Peer Reviewed
  • Ja
Publikationsfokus
  • Science to Science (Qualitätsindikator: I)
Klassifikationsraster der zugeordneten Organisationseinheiten:
Arbeitsgruppen Keine Arbeitsgruppe ausgewählt

Kooperationen

Keine Kooperationspartner ausgewählt

Beiträge der Publikation

Keine verknüpften Publikationen vorhanden