Stammdaten

Evolving Swarm Behavior for Simulated Spiderino Robots
Untertitel:
Kurzfassung:

In swarm robotics research, simulation is often used to avoid the difficulties of designing swarm behavior in the real world. However, designing the controller of swarm members remains a non-trivial task due to the complex interactions between members and the emerging behavior itself. In this paper, FRamework for EVOlutionary design (FREVO) is used as tool for the design, simulation and optimization of swarm behavior for a given problem. This paper demonstrates how FREVO can be used to develop and optimize the behavior of the entire swarm simultaneously by applying an evolutionary algorithm. A case study consisting of twenty robots given the task of gathering near a light source while keeping a minimum distance from each other based solely on local information from simplistic sensors is presented. Considering the need of a fitness function to guide any evolutionary process which is a problem-specific function, the robots' controller is evolved according to a fitness function depending on two factors: the robots' proximity to the light source and the ability to keep a minimum distance between the robots. We examine in particular how the problem can be modeled and how evolution can be applied to create a suitable controller for the swarm members.

Schlagworte: Swarm robotics, Spiderino, Evolutionary optimization
Publikationstyp: Beitrag in Proceedings (Autorenschaft)
Art der Veröffentlichung Online Publikation
Erschienen in: The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications
The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications
zur Publikation
 ( International Academy, Research, and Industry Association (IARIA); )
Erscheinungdatum: 20.02.2019
Titel der Serie: -
Bandnummer: -
Erstveröffentlichung: Ja
Version: -
Seite: S. 21 - 26
Bild der Titelseite: Cover

Identifikatoren

ISBN:
  • 978-1-61208-706-1
ISSN: -
DOI: -
AC-Nummer: -
Homepage: https://www.thinkmind.org/download.php?articleid=adaptive_2019_2_20_50028
Open Access
  • Online verfügbar (Open Access)

Zuordnung

Organisation Adresse
Fakultät für Technische Wissenschaften
 
Institut für Vernetzte und Eingebettete Systeme
Universitätsstraße 65-67
9020  Klagenfurt am Wörthersee
Österreich
  -993640
   kornelia.lienbacher@aau.at
https://nes.aau.at/
zur Organisation
Universitätsstraße 65-67
AT - 9020  Klagenfurt am Wörthersee

Kategorisierung

Sachgebiete
  • 202035 - Robotik
Forschungscluster
  • Selbstorganisierende Systeme
Peer Reviewed
  • Ja
Publikationsfokus
  • Science to Science (Qualitätsindikator: I)
Klassifikationsraster der zugeordneten Organisationseinheiten:
Arbeitsgruppen
  • Smart Grids Group

Kooperationen

Keine Kooperationspartner ausgewählt

Beiträge der Publikation

Keine verknüpften Publikationen vorhanden