Stammdaten

Energy-aware Task Scheduling in Wireless Sensor Networks based on Cooperative Reinforcement Learning
Untertitel:
Kurzfassung: Wireless sensor networks (WSN) are an attractive platform for cyber physical systems. A typical WSN applications composed of different tasks which need to be scheduled on each sensor node. However, the severe energy limitations pose a particular challenge for developing WSN applications, and the scheduling of tasks has typically a strong influence on the achievable performance and energy consumption. In this paper we propose a method for scheduling the tasks using cooperative reinforcement learning (RL) where each node determines the next task based on the observed application behavior. In this RL framework we can trade the application performance and the required energy consumption by a weighted reward function and can therefore achieve different energy/performance results of the overall application. By exchanging data among neighboring nodes we can further improve this energy/performance trade-off. We evaluate our approach in an target tracking application.Our simulations show that cooperative approaches are superior to non-cooperative approaches for this kind of applications.Index Terms—Reinforcement learning, tasks scheduling, energy efficiency, wireless sensor networks, target tracking.
Schlagworte:
Publikationstyp: Beitrag in Sammelwerk (Autorenschaft)
Art der Veröffentlichung Online Publikation
Erschienen in: Proceedings of the IEEE International Conference on Communications (ICC)
Proceedings of the IEEE International Conference on Communications (ICC) (2014)
zur Publikation
 ( IEEE; )
Erscheinungdatum: 2014
Titel der Serie: -
Bandnummer: -
Erstveröffentlichung: Ja
Version: -
Seite: S. 871 - 877

Identifikatoren

ISBN: -
ISSN: -
DOI: http://dx.doi.org/10.1109/ICCW.2014.6881310
AC-Nummer: -
Homepage: http://www.epics-project.eu/publications/2014_khan_iccw.pdf
Open Access
  • Kein Open-Access

Zuordnung

Organisation Adresse
Fakultät für Technische Wissenschaften
 
Institut für Vernetzte und Eingebettete Systeme
Universitätsstraße 65-67
9020  Klagenfurt am Wörthersee
Österreich
  -993640
   kornelia.lienbacher@aau.at
http://nes.aau.at/
zur Organisation
Universitätsstraße 65-67
AT - 9020  Klagenfurt am Wörthersee

Kategorisierung

Sachgebiete
  • 102 - Informatik
  • 202 - Elektrotechnik, Elektronik, Informationstechnik
Forschungscluster
  • Selbstorganisierende Systeme
Peer Reviewed
  • Ja
Publikationsfokus
  • Science to Science (Qualitätsindikator: II)
Klassifikationsraster der zugeordneten Organisationseinheiten:
Arbeitsgruppen Keine Arbeitsgruppe ausgewählt

Kooperationen

Keine Kooperationspartner ausgewählt

Beiträge der Publikation

Keine verknüpften Publikationen vorhanden