Stammdaten

RIO: Minimizing User Interaction in Ontology Debugging
Untertitel:
Kurzfassung: Efficient ontology debugging is a cornerstone for many activities in the context of the Semantic Web, especially when automatic tools produce (parts of) ontologies such as in the field of ontology matching. The best currently known interactive debugging systems rely upon some meta information in terms of fault probabilities, which can speed up the debugging procedure in the good case, but can also have negative impact on the performance in the bad case. The problem is that assessment of the meta information is only possible a-posteriori. Consequently, as long as the actual fault is unknown, there is always some risk of suboptimal interactive diagnoses discrimination. As an alternative, one might prefer to rely on a tool which pursues a no-risk strategy. In this case, however, possibly well-chosen meta information cannot be exploited, resulting again in inefficient debugging actions. In this work we present a reinforcement learning strategy that continuously adapts its behavior depending on the performance achieved and minimizes the risk of using low-quality meta information. Therefore, this method is suitable for application scenarios where reliable a-priori fault estimates are difficult to obtain. Using problematic ontologies in the field of ontology matching, we show that the proposed risk-aware query strategy outperforms both active learning approaches and no-risk strategies on average in terms of required amount of user interaction.
Schlagworte:
Publikationstyp: Sonstige Veröffentlichung (Autorenschaft)
Art der Veröffentlichung Printversion
Erschienen in: -
Erscheinungdatum: 2012
Titel der Serie: -
Bandnummer: -
Heftnummer: -
Erstveröffentlichung: Ja
Seite: -

Identifikatoren

ISBN: -
ISSN: -
DOI: -
AC-Nummer: -
Homepage: http://dblp.uni-trier.de
Open Access
  • Kein Open-Access

Zuordnung

Organisation Adresse
Fakultät für Technische Wissenschaften
 
Institut für Angewandte Informatik
Universitätsstr. 65-67
A-9020  Klagenfurt
Österreich
  -993705
   ainf@aau.at
https://www.aau.at/angewandte-informatik/
zur Organisation
Universitätsstr. 65-67
AT - A-9020  Klagenfurt

Verlag

Organisation Adresse
CEUR Workshop Proceedings (CEUR-WS.org)
Aachen
Deutschland
DE  Aachen

Kategorisierung

Sachgebiete
  • 1108 - Informatik
Forschungscluster Kein Forschungscluster ausgewählt
Zitationsindex
  • n.a.
Informationen zum Zitationsindex: Master Journal List
Peer Reviewed
  • Nein
Publikationsfokus
  • Science to Science (Qualitätsindikator: n.a.)
Klassifikationsraster der zugeordneten Organisationseinheiten:
Arbeitsgruppen Keine Arbeitsgruppe ausgewählt

Kooperationen

Keine Kooperationspartner ausgewählt

Beiträge der Publikation

Keine verknüpften Publikationen vorhanden